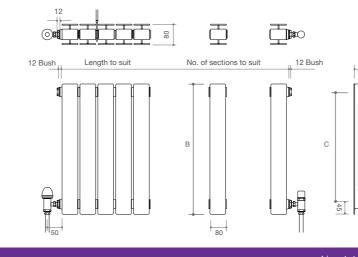
Aluminium Radiators

With its compact design and its attractive linear shape, RIVA provides a high thermal emission with a low water content and a reduced inertia.

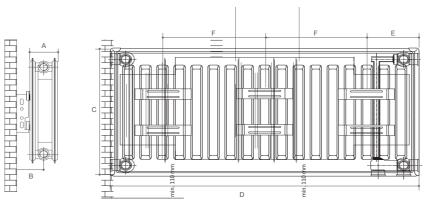
combines with modern heating systems and is an effective response to the need for reduction of energy costs.

- Available in modular sections
- Ideal for use with Heat Pumps
- 15 years guarantee


Steel Radiators

Our competive steel range has compact design paired with its high efficiency/ thermal emission making it the perfect choice for any heating systems.

- With or without hanger
- High efficiency,
- Suitable for low temperature
- Perfect corrosion resistance with
- nano-ceramic surface coating
- 10 year guarantee


Radiator Specs

Aluminium Radiators

		,								
Release of DangerousSubstances					None					
				A1						
Maximum Operating Pressure					16 ba	r				
Test Pressure				27 bar						
	Aluminium Horizontal			Aluminium Vertical						
Height (mm):	430	580	680	780	1080	1280	1480	1680	1880	2080
Km (Coefficient)	0.5667	0.62828	0.7582	0.7996	1.063	1.159	1.3	1.434	1.562	1.685
n (Exponent)	1.2845	1.3262	1.3043	1.3332	1.312	1.326	1.327	1.329	1.33	1.331
"Q t20 (Thermal effect) Watts per Section (80mm)"	26.58	33.39	37.73	43.39	54.14	61.55	69.25	76.85	83.96	90.84
"Q t50 (Thermal effect) Watts per Section (80mm)"	86.23	112.55	124.67	147.21	180.13	207.45	233.60	259.70	284.00	307.56

Steel Radiators

Steel				
Release of Dangerous Substances		No	one	
		1	41	
Maximum Operating Pressure		61	bar	
Test Pressure		10	bar	
	Steel	Type 11	Steel T	ype
Height (mm):	500	600	500	
Km (Coefficient)	6.35134	7.33984	10.3724	1
n (Exponent)	1.25304	1.25649	1.282	
"Q t20 (Thermal effect) Watts per Section (80mm)"	271.09	316.53	482.84	ļ
"Q t50 (Thermal effect) Watts per Section (80mm)"	854.56	1000.98	1563.00	1

Dimensions					
	430	580	680	780	
(A)	80mm	80mm	80mm	80mm	
(B)	430mm	580mm	680mm	780mm	
(C)	350mm	500mm	600mm	700mm	

	Dimensions
	600
(A)	104 mm
(B)	83mm
(C)	600 mm
(D)	0.4 m - 2 m
(E)	101 mm
(F)	(C-2D)/2

Radiator Thermal Output Calculation

500

104mm 83mm

500mm 0.4m - 2m 101mm (C-2D)/2

$Q = Km * (\Delta T \wedge n)$

 ΔT = see talbe 2 Km= see table below n= see table below

Table 2

 ΔT = Mean Water Temp (°C) - Design Room Temp1 (°C).

Example: $\Delta T = 40 - 18$

Mean Water Temp $^{\circ}C$ = Heat Source Flow Temp ($^{\circ}C$) - (System Temp Drop°C/2).

Example: MWT = 45 - (10/2)

RADIATORS

pe 22 600 11.4097 1.295 552.21 1809.01